Sains Malaysiana 54(7)(2025): 1847-1857
http://doi.org/10.17576/jsm-2025-5407-17
Thermal Adaptation Response of Glaciozyma antarctica PI12: Statistical Analysis of Gene Expression under Temperature Conditions
(Tindak Balas Penyesuaian Terma Glaciozyma antarctica PI12: Analisis Statistik Pengekspresan Gen di bawah Keadaan Suhu)
NURUL SARAH IZZATI ZAHID & NORA MUDA*
Department of Mathematical Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 2 April 2024/Diterima: 7 Mei 2025
Abstract
Glaciozyma antarcticaPI12, a psychrophilic yeast isolated from Antarctic
Sea ice, exhibits remarkable cold adaptation mechanisms. While its optimal
growth occurs at 12 °C, its transcriptional response across broader temperature
ranges remains poorly understood. We analysed the expression patterns of 7,853
genes under varying temperatures (-12 °C to 20 °C) and exposure times (6 and 24
h) to understand thermal stress responses. Our findings showed that G.
antarctica exhibits maximum transcriptional changes (182.4% increase in
differentially expressed genes) at 12 °C after 24 h exposure compared to -12 °C/6
h, suggesting an optimal temperature range for cellular adaptation. Gene
expression decreased at higher temperatures (16 °C & 20 °C), indicating
potential thermal stress responses. Temporal analysis showed that 24-h exposure
elicited stronger transcriptional responses compared to 6-h exposure, highlighting
the time-dependent nature of thermal adaptation. Statistical modelling using
negative binomial regression supported these biological observations. Our
findings provide new insights into G. antarctica's transcriptional response to thermal stress and establish a framework for
analysing complex gene expression patterns in psychrophilic organisms.
Keywords: Gene expression; Glaciozyma antarcticaPI12; negative binomial model; psychrophilic
yeast; RNA sequencing; thermal adaptation
Abstrak
Glaciozyma antarctica PI12, yis psikrofilik yang dipencilkan daripada ais Laut Antartika menunjukkan mekanisme penyesuaian sejuk yang luar biasa. Walaupun pertumbuhan optimumnya berlaku pada 12 °C, tindak balas pentranskripsinya merentas julat suhu yang lebih luas masih kurang difahami. Kami menganalisis corak ekspresi 7,853 gen di bawah suhu berbeza (-12 °C hingga 20 °C) dan
masa pendedahan (6 & 24 jam) untuk memahami tindak balas tekanan terma. Penemuan kami menunjukkan bahawa G. antarctica mempamerkan perubahan pentranskripsi maksimum (peningkatan 182.4% dalam pengekspresan gen berbeza) pada
12 °C selepas pendedahan 24
jam berbanding -12 °C/6 jam, mencadangkan julat suhu optimum untuk penyesuaian sel. Pengekspresan gen menurun pada suhu yang lebih tinggi (16 °C & 20 °C) menunjukkan potensi tindak balas tekanan terma. Analisis temporal menunjukkan bahawa pendedahan 24 jam menimbulkan tindak balas pentranskripsi yang lebih kuat berbanding dengan pendedahan 6 jam, menonjolkan sifat penyesuaian terma yang bergantung kepada masa. Pemodelan statistik menggunakan regresi binomial negatif menyokong pemerhatian biologi ini. Penemuan kami memberikan pandangan baharu tentang tindak balas pentranskripsi G. antarctica terhadap tekanan terma dan mewujudkan rangka kerja untuk menganalisis corak pengekspresan gen kompleks dalam organisma psikrofilik.
Kata kunci: Glaciozyma antarctica PI12; model binomial negatif; penjujukan RNA; pengekspresan gen; penyesuaian terma; yis psikrofilik
RUJUKAN
Bharudin, I., Zolkefli, R., Abu Bakar, M.F., Kamaruddin, S., Md Illias, R.,
Najimudin, N., Mahadi, N.M., Abu Bakar, F.D. & Abdul Murad, A.M. 2018. Pengenalpastian dan profil pengekspresan gen biosintesis asid amino yis psikrofil, Glaciozyma antarctica. Sains Malaysiana 47(8): 1675-1684. doi:10.17576/jsm-2018-4708-06
Bharudin, I., Zaki,
N.Z., Abu Bakar, F.D., Mahadi, N.M., Najimudin, N., Illias, R.M. & Murad, A.M.A. 2014.
Comparison of RNA extraction methods for transcript analysis from the
psychrophilic yeast, Glaciozyma antarctica. Malays. Appl. Biol. 43: 71-79.
Blanc, G., Agarkova,
I., Grimwood, J., Kuo, A., Brueggeman, A., Dunigan,
D.D., Gurnon, J., Ladunga, I.,
Lindquist, E.,
Lucas, S.,
Pangilinan, J., Pröschold, T.,
Salamov, A.,
Schmutz, J.,
Weeks, D.,
Yamada, T.,
Lomsadze, A., Borodovsky, M.,
Claverie, J-M.,
Grigoriev, I.V. &
Van Etten, J.L. 2012. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biology 13: R39.
Boo, S.Y.,
Wong, C.M.V.L., Rodrigues, K.F., Najimudin, N.,
Murad, A.M.A. & Mahadi, N.M. 2013. Thermal stress responses in Antarctic
yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biology 36(3):
381-389. doi:10.1007/S00300-012-1268-2
Brizzio, S., Turchettli, B. & De Garcia, V. 2007. Extracellular
enzymatic activities of basidiomycetous yeasts isolated from glacial and
subglacial waters of northwest Patagonia (Argentina). Canadian Journal of
Microbiology 53: 519-525.
Cvetkovska, M., HüNer, N.P.A. & Smith, D.R. 2017. Chilling out: The
evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology 40:
1169-1184. doi: 10.1007/s00300-016-2045-4
Durán, P.,
Barra, P.J., Jorquera, M.A., Viscardi, S., Fernandez, C., Paz, C., de la Luz Mora,
M. & Bol, R. 2019. Occurrence of soil fungi in pristine Antarctic environments. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2019.00028
Firdaus-Raih, M., Hashim, N.H.F., Bharudin,
I., Abu Bakar, M.F., Huang, K.K., Alias, H., Lee, B.K.B., Mat Isa, M.N.,
Mat-Sharani, S., Sulaiman, S., Tay, L.J., Zolkefli,
R., Muhammad Noor, Y., Law, D.S.N., Abdul Rahman, S.H., Md-Illias, R., Abu
Bakar, F.D., Najimudin, N., Abdul Murad, A.M. &
Mahadi, N.M. 2018. The Glaciozyma antarctica genome reveals an array of systems that
provide sustained responses toward temperature variations in a persistently
cold habitat. PLoS ONE 13(1): e0189947. doi:10.1371/JOURNAL.PONE.0189947
Foong, P., Karjiban, R. & Normi, Y. 2015. Bioinformatics survey of
the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics 7: 156-164.
Fujiu, S., Ito, M.,
Kobayashi, E., Hanada, Y., Yoshida, M., Kudoh, S. & Hoshino, T. 2021.
Basidiomycetous yeast, Glaciozyma antarctica, forming frost-columnar colonies on frozen
medium. Microorganisms 9(8): 1679. doi:10.3390/MICROORGANISMS9081679/S1
Gao, T., Kang,
S., Zhang, Y., Sprenger, M., Wang, F., Du, W., Wang, X. & Wang, X. 2020.
Characterization, sources and transport of dissolved organic carbon and
nitrogen from a glacier in the Central Asia. Science of The Total
Environment 725: 138346. https://doi.org/10.1016/j.scitotenv.2020.138346
Garrido-Benavent, I., Pérez-Ortega, S., Durán, J., Ascaso, C., Pointing, S.B., Rodríguez-Cielos,
R., Navarro, F. & de Los Ríos, A. 2020. Differential colonization and
succession of microbial communities in rock and soil substrates on a maritime Antarctic
glacier forefield. Frontiers in Microbiology 11: 126.
doi:10.3389/FMICB.2020.00126/BIBTEX
Hossain, M.Z.
1998. AIC and BIC - The two competitive information criteria for model
selection in economics and statistics. The Jahangirnagar Review, Part II:
Social Science. XIX-XXII: 133-140.
https://www.researchgate.net/publication/282731304_AIC_and_BIC_-_The_two_competitive_information_criteria_for_model_selection_in_economics_and_statistics
Koh, J.S.P.,
Wong, C.M.V.L., Najimudin, N. & Mahadi, N.M.
2019. Gene expression patterns of Glaciozyma antarctica in response to temperature shifts. Polar
Science 4: 45-54. doi:https://doi.org/10.1016/j.polar.2018.11.007
Kuhn, M. 2008.
The climate of snow and ice as boundary condition for microbial life. In Psychrophiles:
From Biodiversity to Biotechnology, edited by Margesin,
R., Schinner, F., Marx, J.C. & Gerday, C. Berlin,
Heidelberg: Springer https://doi.org/10.1007/978-3-540-74335-4_1
Li, X., Ding,
Y., Xu, J., He, X., Han, T., Kang, S., Wu, Q., Mika, S., Yu, Z. & Li, Q.
2018. Importance of mountain glaciers as a source of dissolved organic carbon. Journal
of Geophysical Research: Earth Surface 123(9): 2123-2134. https://doi.org/10.1029/2017JF004333
Margesin, R. &
Miteva, V. 2011. Diversity and ecology of psychrophilic microorganisms. Research
in Microbiology 162(3): 346-361.
Morgan-Kiss,
R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch,
L. & Huner, N.P. 2006. Adaptation and acclimation of photosynthetic
microorganisms to permanently cold environments. Microbiology and Molecular
Biology Reviews 70(1): 222-252.
R Core Team.
2022. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical
Computing. https://www.R-project.org/.
Safinah Sharuddin, Nora Muda, Nazalan Najimudin & Abdul Rahman Othman. 2020. An interactive dashboard for visualization of RNAseq data of yeast Glaciozyma antarctica PI12. International Journal of Engineering Trends and Technology (IJETT)- Editor’s Issues: 110-113.
doi: 10.14445/22315381/CATI1P220.
Singh, P., Fillat, M. & Kumar, A. 2021. Cyanobacterial Lifestyle
and Its Applications in Biotechnology. Massachusetts: Academic Press.
https://doi.org/10.1016/B978-0-323-90634-0.00032-9
Tronelli, D., Maugini, E. & Bossa, F. 2007. Structural adaptation to
low temperatures - Analysis of the subunit interface of oligomeric psychrophilic
enzymes. The FEBS Journal 274: 4595-4608.
Turchetti, B.,
Thomas Hall, S.R., Connell, L.B., Branda, E., Buzzini, P., Theelen,
B., Müller, W.H. & Boekhout, T. 2011. Psychrophilic yeasts from Antarctica
and European glaciers: Description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15: 573.
Yusof, N.A.,
Hashim, N.H.F., Beddoe, T., Mahadi, N.M., Illias, R.M., Bakar, F.D.A. &
Murad, A.M.A. 2016. Thermotolerance and molecular chaperone function of an
SGT1-like protein from the psychrophilic yeast, Glaciozyma antarctica. Cell Stress & Chaperones 21(4):
707-715. doi:10.1007/S12192-016-0696-2
Yusof, N.A.,
Hashim, N.H.F. & Bharudin, I. 2021. Cold adaptation
strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12. Journal of Fungi 7(7):
528. doi:10.3390/JOF7070528
*Pengarang untuk surat-menyurat; email: noramuda@ukm.edu.my