Sains Malaysiana 54(7)(2025): 1847-1857

http://doi.org/10.17576/jsm-2025-5407-17

 

Thermal Adaptation Response of Glaciozyma antarctica PI12: Statistical Analysis of Gene Expression under Temperature Conditions

(Tindak Balas Penyesuaian Terma Glaciozyma antarctica PI12: Analisis Statistik Pengekspresan Gen di bawah Keadaan Suhu)

 

NURUL SARAH IZZATI ZAHID & NORA MUDA*

 

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 2 April 2024/Diterima: 7 Mei 2025

 

Abstract

Glaciozyma antarcticaPI12, a psychrophilic yeast isolated from Antarctic Sea ice, exhibits remarkable cold adaptation mechanisms. While its optimal growth occurs at 12 °C, its transcriptional response across broader temperature ranges remains poorly understood. We analysed the expression patterns of 7,853 genes under varying temperatures (-12 °C to 20 °C) and exposure times (6 and 24 h) to understand thermal stress responses. Our findings showed that G. antarctica exhibits maximum transcriptional changes (182.4% increase in differentially expressed genes) at 12 °C after 24 h exposure compared to -12 °C/6 h, suggesting an optimal temperature range for cellular adaptation. Gene expression decreased at higher temperatures (16 °C & 20 °C), indicating potential thermal stress responses. Temporal analysis showed that 24-h exposure elicited stronger transcriptional responses compared to 6-h exposure, highlighting the time-dependent nature of thermal adaptation. Statistical modelling using negative binomial regression supported these biological observations. Our findings provide new insights into G. antarctica's transcriptional response to thermal stress and establish a framework for analysing complex gene expression patterns in psychrophilic organisms.

Keywords: Gene expression; Glaciozyma antarcticaPI12; negative binomial model; psychrophilic yeast; RNA sequencing; thermal adaptation

 

Abstrak

Glaciozyma antarctica PI12, yis psikrofilik yang dipencilkan daripada ais Laut Antartika menunjukkan mekanisme penyesuaian sejuk yang luar biasa. Walaupun pertumbuhan optimumnya berlaku pada 12 °C, tindak balas pentranskripsinya merentas julat suhu yang lebih luas masih kurang difahami. Kami menganalisis corak ekspresi 7,853 gen di bawah suhu berbeza (-12 °C hingga 20 °C) dan masa pendedahan (6 & 24 jam) untuk memahami tindak balas tekanan terma. Penemuan kami menunjukkan bahawa G. antarctica mempamerkan perubahan pentranskripsi maksimum (peningkatan 182.4% dalam pengekspresan gen berbeza) pada 12 °C selepas pendedahan 24 jam berbanding -12 °C/6 jam, mencadangkan julat suhu optimum untuk penyesuaian sel. Pengekspresan gen menurun pada suhu yang lebih tinggi (16 °C & 20 °C) menunjukkan potensi tindak balas tekanan terma. Analisis temporal menunjukkan bahawa pendedahan 24 jam menimbulkan tindak balas pentranskripsi yang lebih kuat berbanding dengan pendedahan 6 jam, menonjolkan sifat penyesuaian terma yang bergantung kepada masa. Pemodelan statistik menggunakan regresi binomial negatif menyokong pemerhatian biologi ini. Penemuan kami memberikan pandangan baharu tentang tindak balas pentranskripsi G. antarctica terhadap tekanan terma dan mewujudkan rangka kerja untuk menganalisis corak pengekspresan gen kompleks dalam organisma psikrofilik.

Kata kunci: Glaciozyma antarctica PI12; model binomial negatif; penjujukan RNA; pengekspresan gen; penyesuaian terma; yis psikrofilik

 

RUJUKAN

Bharudin, I., Zolkefli, R., Abu Bakar, M.F., Kamaruddin, S., Md Illias, R., Najimudin, N., Mahadi, N.M., Abu Bakar, F.D. & Abdul Murad, A.M. 2018. Pengenalpastian dan profil pengekspresan gen biosintesis asid amino yis psikrofil, Glaciozyma antarctica. Sains Malaysiana 47(8): 1675-1684. doi:10.17576/jsm-2018-4708-06

Bharudin, I., Zaki, N.Z., Abu Bakar, F.D., Mahadi, N.M., Najimudin, N., Illias, R.M. & Murad, A.M.A. 2014. Comparison of RNA extraction methods for transcript analysis from the psychrophilic yeast, Glaciozyma antarctica. Malays. Appl. Biol. 43: 71-79.

Boo, S.Y., Wong, C.M.V.L., Rodrigues, K.F., Najimudin, N., Murad, A.M.A. & Mahadi, N.M. 2013. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biology 36(3): 381-389. doi:10.1007/S00300-012-1268-2

Brizzio, S., Turchettli, B. & De Garcia, V. 2007. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology 53: 519-525.

Cvetkovska, M., HüNer, N.P.A. & Smith, D.R. 2017. Chilling out: The evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology 40: 1169-1184. doi: 10.1007/s00300-016-2045-4

Durán, P., Barra, P.J., Jorquera, M.A., Viscardi, S., Fernandez, C., Paz, C., de la Luz Mora, M. & Bol, R. 2019. Occurrence of soil fungi in pristine Antarctic environments. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2019.00028

Firdaus-Raih, M., Hashim, N.H.F., Bharudin, I., Abu Bakar, M.F., Huang, K.K., Alias, H., Lee, B.K.B., Mat Isa, M.N., Mat-Sharani, S., Sulaiman, S., Tay, L.J., Zolkefli, R., Muhammad Noor, Y., Law, D.S.N., Abdul Rahman, S.H., Md-Illias, R., Abu Bakar, F.D., Najimudin, N., Abdul Murad, A.M. & Mahadi, N.M. 2018. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses toward temperature variations in a persistently cold habitat. PLoS ONE 13(1): e0189947. doi:10.1371/JOURNAL.PONE.0189947

Foong, P., Karjiban, R. & Normi, Y. 2015. Bioinformatics survey of the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics 7: 156-164.

Fujiu, S., Ito, M., Kobayashi, E., Hanada, Y., Yoshida, M., Kudoh, S. & Hoshino, T. 2021. Basidiomycetous yeast, Glaciozyma antarctica, forming frost-columnar colonies on frozen medium. Microorganisms 9(8): 1679. doi:10.3390/MICROORGANISMS9081679/S1

Gao, T., Kang, S., Zhang, Y., Sprenger, M., Wang, F., Du, W., Wang, X. & Wang, X. 2020. Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Science of The Total Environment 725: 138346. https://doi.org/10.1016/j.scitotenv.2020.138346

Garrido-Benavent, I., Pérez-Ortega, S., Durán, J., Ascaso, C., Pointing, S.B., Rodríguez-Cielos, R., Navarro, F. & de Los Ríos, A. 2020. Differential colonization and succession of microbial communities in rock and soil substrates on a maritime Antarctic glacier forefield. Frontiers in Microbiology 11: 126. doi:10.3389/FMICB.2020.00126/BIBTEX

Hossain, M.Z. 1998. AIC and BIC - The two competitive information criteria for model selection in economics and statistics. The Jahangirnagar Review, Part II: Social Science. XIX-XXII: 133-140. https://www.researchgate.net/publication/282731304_AIC_and_BIC_-_The_two_competitive_information_criteria_for_model_selection_in_economics_and_statistics

Koh, J.S.P., Wong, C.M.V.L., Najimudin, N. & Mahadi, N.M. 2019. Gene expression patterns of Glaciozyma antarctica in response to temperature shifts. Polar Science 4: 45-54. doi:https://doi.org/10.1016/j.polar.2018.11.007

Kuhn, M. 2008. The climate of snow and ice as boundary condition for microbial life. In Psychrophiles: From Biodiversity to Biotechnology, edited by Margesin, R., Schinner, F., Marx, J.C. & Gerday, C. Berlin, Heidelberg: Springer https://doi.org/10.1007/978-3-540-74335-4_1

Li, X., Ding, Y., Xu, J., He, X., Han, T., Kang, S., Wu, Q., Mika, S., Yu, Z. & Li, Q. 2018. Importance of mountain glaciers as a source of dissolved organic carbon. Journal of Geophysical Research: Earth Surface 123(9): 2123-2134. https://doi.org/10.1029/2017JF004333

Margesin, R. & Miteva, V. 2011. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology 162(3): 346-361.

Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L. & Huner, N.P. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews 70(1): 222-252.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria:  R Foundation for Statistical Computing. https://www.R-project.org/.

Safinah Sharuddin, Nora Muda, Nazalan Najimudin & Abdul Rahman Othman. 2020. An interactive dashboard for visualization of RNAseq data of yeast Glaciozyma antarctica PI12. International Journal of Engineering Trends and Technology (IJETT)- Editor’s Issues: 110-113. doi: 10.14445/22315381/CATI1P220.

Singh, P., Fillat, M. & Kumar, A. 2021. Cyanobacterial Lifestyle and Its Applications in Biotechnology. Massachusetts: Academic Press. https://doi.org/10.1016/B978-0-323-90634-0.00032-9

Tronelli, D., Maugini, E. & Bossa, F. 2007. Structural adaptation to low temperatures - Analysis of the subunit interface of oligomeric psychrophilic enzymes. The FEBS Journal 274: 4595-4608.

Turchetti, B., Thomas Hall, S.R., Connell, L.B., Branda, E., Buzzini, P., Theelen, B., Müller, W.H. & Boekhout, T. 2011. Psychrophilic yeasts from Antarctica and European glaciers: Description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15: 573.

Yusof, N.A., Hashim, N.H.F., Beddoe, T., Mahadi, N.M., Illias, R.M., Bakar, F.D.A. & Murad, A.M.A. 2016. Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma antarctica. Cell Stress & Chaperones 21(4): 707-715. doi:10.1007/S12192-016-0696-2

Yusof, N.A., Hashim, N.H.F. & Bharudin, I. 2021. Cold adaptation strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12. Journal of Fungi 7(7): 528. doi:10.3390/JOF7070528

 

*Pengarang untuk surat-menyurat; email: noramuda@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya